jueves, 7 de noviembre de 2013


Tales De Mileto





Filósofo y matemático griego. En su juventud viajó a Egipto, donde aprendió geometría de los sacerdotes de Menfis, y astronomía, que posteriormente enseñaría con el nombre de astrosofía. Dirigió en Mileto una escuela de náutica, construyó un canal para desviar las aguas del Halis y dio acertados consejos políticos. Fue maestro de Pitágoras y Anaxímenes, y contemporáneo de Anaximandro.







   Aristoteles consideró a Tales como el primero en sugerir un único sustrato formativo de la materia; además, en su intención de explicar la naturaleza por medio de la simplificación de los fenómenos observables y la búsqueda de causas en el mismo entorno natural, Tales fue uno de los primeros en trascender el tradicional enfoque mitológico que había caracterizado la filosofía griega de siglos anteriores.




Teorema de Tales



Cuando en geometría hablemos del Teorema de Tales (o Thales), debemos aclarar a cuál nos referimos ya que existen dos teoremas atribuidos al matemático griego Tales de Mileto en el siglo VI a. C.
El primero de ellos se refiere a la construcción de un triángulo que sea semejante a otro existente (triángulos semejantes son los que tienen iguales ángulos).

Mientras que el segundo desentraña una propiedad esencial de los circuncentros de todos los triángulos rectángulos (los circuncentros se encuentran en el punto medio de su hipotenusa).



Nosotros hablaremos del primer Teorema:


Como definición previa al enunciado del teorema, es necesario establecer que dos triángulos son semejantes si tienen los ángulos correspondientes iguales y sus lados son proporcionales entre si. El primer teorema de Tales recoge uno de los postulados más básicos de la geometría, a saber, que:
Si en un triángulo se traza una línea paralela a cualquiera de sus lados, se obtienen dos triángulos semejantes.
Entonces, veamos el primer Teorema de Tales en un triángulo




Hagamos un ejercicio como ejemplo:







Como vemos, la principal aplicación del teorema, y la razón de su fama, se deriva del establecimiento de la condición de semejanza de triángulos, a raíz de la cual se obtiene el siguiente corolario.

La leyenda de Tales y las pirámides

Según la leyenda (relatada por Plutarco), Tales de Mileto en un viaje a Egipto, visitó las pirámides de Guiza (Keops, Kefrén y Micerinos), construidas varios siglos antes. 


Admirado ante tan maravillosos monumentos, quiso saber su altura.

La leyenda dice que solucionó el problema aprovechando la semejanza de triángulos (y bajo la suposición de que los rayos solares incidentes eran paralelos).

Así, estableció una relación de semejanza (Primer teorema de Tales) entre dos triángulos rectángulos, los que se grafican en la figura a la derecha.
Por un lado el que tiene por catetos (C y D) a la longitud de la sombra de la pirámide (C, conocible) y la longitud de su altura (D, desconocida), y por otro lado, valiéndose de una vara (clavada en el suelo de modo perfectamente vertical) otro cuyos catetos conocibles (A y B) son, la longitud de la vara (A) y la longitud de su sombra (B). Como en triángulos semejantes, se cumple que:


por lo tanto la altura de la pirámide es:






con lo cual resolvió el problema.





Ejercicios:


1. Las rectas a, b y c son paralelas. Hallar la longitud de x.








2. Las rectas a, b son paralelas. ¿Podemos afirmar que c es paralela a las rectas a y b?




  , porque se cumple el teorema de Thales.
Video De Apoyo:





No hay comentarios:

Publicar un comentario